Abstract
We report a study of crack patterns formed in laponite gel drying in an electric field. The sample dries in a circular petri dish and the field is radial, acting inward or outward. A system of radial cracks forms in the setup with the center terminal positive, while predominantly cross-radial cracks form when the center is at a negative potential. The laponite accumulates near the negative terminal making the layer thicker at this end. A spring model on a square lattice is used to simulate the desiccation crack formation, with an additional radial force acting due to the electric field. With the radial force acting outward, radial cracks form and for the reversed field cross-radial cracks form. This conforms to the observation that laponite platelets become effectively positive due to overcharging and are attracted towards the negative terminal.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.