Abstract

Enabling scalable and energy-efficient control of spin defects in solid-state media is desirable for realizing transformative quantum information technologies. Exploiting voltage-controlled magnetic anisotropy, we report coherent manipulation of nitrogen-vacancy (NV) centers by the spatially confined magnetic stray fields produced by a proximate resonant magnetic tunnel junction (MTJ). Remarkably, the coherent coupling between NV centers and the MTJ can be systematically controlled by a DC bias voltage, allowing for appreciable electrical tunability in the presented hybrid system. In comparison with current state-of-the-art techniques, the demonstrated NV-based quantum operational platform exhibits significant advantages in scalability, device compatibility, and energy-efficiency, further expanding the role of NV centers in a broad range of quantum computing, sensing, and communications applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call