Abstract

The influence of fractal normal phase clusters on the electric field induced by the flow and creep of the magnetic flux in percolation superconductors has been considered. The current–voltage characteristics of such superconductors with allowance for the influence of the fractal dimension of cluster boundaries and the pinning barrier height have been obtained. The vortex dynamics in percolation superconductors with a fractal cluster structure in a viscous flow of the magnetic flux, the Anderson–Kim creep, and the collective flux creep has been analyzed. It has been discovered that the fractality of normal phase clusters reduces the electric field arising in the initial stage of the resistive transition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.