Abstract

Structural relaxation of amorphous phase-change-memory materials has been attributed to defect-state annihilation from the band gap, leading to a time-dependent drift in the electrical resistance, which hinders the development of multi-level memory devices with increased data-storage density. In this computational study, homogeneous electric fields have been applied, by utilizing a Berry-phase approach with hybrid-density-functional-theory simulations, to ascertain their effect on the atomic and electronic structures associated with the mid-gap states in models of the prototypical glassy phase-change material, Ge2Sb2Te5. Above a threshold value, electric fields remove spatially localized defects from the band gap and transform them into delocalized conduction-band-edge electronic states. A lowering of the nearest-neighbor coordination of Ge atoms in the local environment of the defect-host motif is observed, accompanied by a breaking of 4-fold rings. This engineered structural relaxation, through electric-field tuning of electronic and geometric properties in the amorphous phase, paves the way to the design of optimized glasses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.