Abstract

AbstractWe have used photoluminescence excitation and photocurrent spectroscopy to investigate the electronic properties of InxGa1-xAs/GaAs strained layer quantum wells and superlattices. In quantum wells, sharp excitonic transitions between discrete energy levels are observed both in excitation and near flatband photocurrent spectra whereas superlattices show heavy-hole to conduction miniband transitions at the Brillouin mini-zone centre and edge, directly giving the electron miniband width. Applying a longitudinal electric field to the quantum wells produces a red shift of the excitons due to the quantum confined Stark effect, while in superlattices, photocurrent spectra at finite applied electric fields show for the first time in this system, the effects of Wannier-Stark quantization. The analysis of the spectra provides a precise determination of the band offset.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.