Abstract

Electron and hole dynamics from self-assembled quantum dots (QDs) subject to vertical electric fields have been studied by observing the photoluminescence (PL) image on the sample surface. We have observed an asymmetric profile associated to migration of optically excited electron and holes in the quantum dot structure. The asymmetric profile is increased by rising the applied bias voltage. This behaviour was associated with charge accumulation at different regions of the QD layer plane due to an asymmetric electric field, upon which the QDs are immersed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.