Abstract

The electric field effect on the emission rate enhancement of the H4F and H4S hole trap in highly Zn-doped InP has been examined using the deep level transient spectroscopy (DLTS) and double correlation DLTS (DDLTS). The DLTS and DDLTS results have been found to be in good agreement for low and intermediate electric fields, but they disagree for large field effect. Comparing our emission data with the theory, we have found that H4F obeys the quantum model of phonon-assisted tunneling, while H4S follows the Poole–Frenkel model employing a three-dimensional screening Coulombic potential. Our results show that the H4S defect can be attributed to a charged (Vp–Zn) complex.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.