Abstract

Electric field effect by the positive and negative changes near the active site is an important factor for controlling the reactivity of metalloenzymes. Previously, we reported that the positive charge of the N-methyl-2-pyridinium cation increases the reactivity of oxoiron(IV) porphyrin π-cation radical complex (Compound I), due to the attractive Coulomb interaction with electrons in Compound I. To further investigate the electric field effect, we study here the effect of the negative charge of the sulfonate group on the electronic structure and reactivity using Compound I of meso-tetrakis(2,4,6-trimethyl-3-sulfonatophenyl)porphyrin (TMPS-I). Although Compound I has been known as a very unstable complex, TMPS-I is very stable in 0.1 M acetate buffer at pH = 6. The half-life of TMPS-I is estimated to be 6.9 × 103 s, which is the longest in Compound I previously reported. The redox potential of TMPS-I is estimated to be 0.76 V vs SCE in phosphate buffer, pH = 10. Kinetic analysis with stopped-flow technique indicates TMPS-I is less reactive than Compounds I reported previously. However, 1H NMR and EPR spectra of TMPS-I are very close to those of Compounds I reported previously. The DFT calculations show that the orbital energy of Compound I is drastically altered by the positive and negative charges on the meso-phenyl group, suggesting the electric field effect. The difference of the reactivity of Compound I can be rationalized with the change of the orbital energy caused by the intramolecular electric field effect of the positive and negative charges.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.