Abstract

Electrochemical measurements, atomic force microscopy, and scanning tunneling microscopy have been combined to describe the electric-field-controlled surface aggregation of N-dodecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (DDAPS), a model zwitterionic surfactant, at a Au(111) electrode surface. At concentrations below the critical micelle concentration (CMC), the monomer adsorbs and aggregates at the surface. The charge on the metal (sigmaM) controls the orientation of adsorbed molecules and consequently the film structure. At high negative (sigmaM < -5 microC cm-2) charge densities, a spongy, disordered film is formed in which the polar heads are turned toward the solution. At high positive (sigmaM > +5 microC cm-2) charge densities, a planar film with "blisters" is observed with the polar heads of DDAPS turned to the metal. Hemicylindrical aggregates are observed in the intermediate charge density range (-5 < sigmaM < +5 microC cm-2). At bulk concentrations higher than the CMC, micelles adsorb and the structure of these films is controlled by the fusion of the adsorbed micelles. STM and AFM images provided direct visualization of this field-driven surface aggregation of the zwitterionic surfactant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.