Abstract
We predict electric-field-driven exciton vortices in transition metal dichalcogenide monolayers in the Bose-Einstein condensation regime. The Rashba spin-orbit coupling created by perpendicular electric fields couples the bright and dark excitons, behaves like an emerging SU(2) gauge field for excitons, and induces spatially asymmetric distribution of exciton density. We find the interplay between the dipole-dipole interaction among excitons and Rashba spin-orbit coupling leads to the phase transitions containing different vortices, from a single pair of vortices to numerous satellite vortices appearing at the edge of the sample. The exciton condensation at the $K$ and ${K}^{\ensuremath{'}}$ valleys shows mirror-symmetric patterns composed of exciton vortices rotating oppositely, which are protected topologically by the winding numbers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.