Abstract

Abstract Valley, the intrinsic feature of silicon, is an inescapable subject in silicon-based quantum computing. At the spin-valley hotspot, both Rabi frequency and state relaxation rate are significantly enhanced. With protection against charge noise, the valley degree of freedom is also conceived to encode a qubit to realize noise-resistant quantum computing. Here, based on the spin qubit composed of one or three electrons, we characterize the intrinsic properties of valley in an isotopically enriched silicon quantum dot (QD) device. For one-electron qubit, we measure two electric-dipole spin resonance (EDSR) signals which are attributed to partial occupation of two valley states. The resonance frequencies of two EDSR signals have opposite electric field dependences. Moreover, we characterize the electric field dependence of the upper valley state based on three-electron qubit experiments. The difference of electric field dependences of two valleys is 52.02 MHz/V, which is beneficial for tuning qubit frequency to meet different experimental requirements. As an extension of electrical control spin qubits, the opposite electric field dependence is crucial for qubit addressability, individual single-qubit control and two-qubit gate approaches in scalable quantum computing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call