Abstract
The electro-optic effect in two-dimensional (2D) MgO nanoflakes synthesized by a microwave-assisted process is demonstrated using a designed optical fiber modulator. The guiding properties of intense core modes excited by the material cavity are modulated by the external electric field. The feasibility of 2D MgO nanoflakes as an effective electro-optic modulator and switching are experimentally verified for the first time, to the best of our knowledge. The proposed optical-fiber-based electro-optic modulator achieves a linear wavelength shift with a high sensitivity of 12.87 pm/V(77.22 nm/kV/mm, in the electric field). The results show that MgO, as a metal oxide 2D material, is a very promising material for electro-optic modulators and switching.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.