Abstract
Liposomes are one of the most promising biomaterial carriers to deliver DNA, 1 1 DNA – deoxyribonucleic acid. proteins, drugs and medicine in human bodies. However, artificially formed liposomes have to satisfy some crucial functions such as: (i) to efficiently carry drugs to targeted systems, (ii) to be biologically stable until they are removed from human body, (iii) to be biodegradable, and (iv) to be sufficiently small in size for effective drug delivery. Here, we report an efficient and novel method to simultaneously manufacture and incorporate super-paramagnetic iron-oxide nanoparticles (efficient target finder in the presence of external magnetic field) into the liposome's interior and its bilayer. In this technique, we use electric field to control the formation of liposomes and the incorporation of iron oxide nanoparticles. Our preparation procedure does not require any chemical or ultrasound treatments. Apart from that, we also provide further experimental investigations on the role of electric fields on the formation of liposomes using XPS 2 2 XPS – X-ray photoelectron spectroscopy. and the magnetic-optical microscope.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.