Abstract
In recent years, the field of antiferromagnetic spintronics has been substantially advanced. Electric-field control is a promising approach for achieving ultralow power spintronic devices via suppressing Joule heating. Here, cutting-edge research, including electric-field modulation of antiferromagnetic spintronic devices using strain, ionic liquids, dielectric materials, and electrochemical ionic migration, is comprehensively reviewed. Various emergent topics such as the Néel spin-orbit torque, chiral spintronics, topological antiferromagnetic spintronics, anisotropic magnetoresistance, memory devices, 2D magnetism, and magneto-ionic modulation with respect to antiferromagnets are examined. In conclusion, the possibility of realizing high-quality room-temperature antiferromagnetic tunnel junctions, antiferromagnetic spin logic devices, and artificial antiferromagnetic neurons is highlighted. It is expected that this work provides an appropriate and forward-looking perspective that will promote the rapid development of this field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.