Abstract

Using the flash sintering technique, cubic yttria‐stabilized zirconia is shown to sinter at 390°C, more than 1000°C below nominal sintering temperatures, by using a DC electric field of 2250 V/cm. Furthermore, flash sintering experiments performed with electric fields between 60 and 2250 V/cm were used to show that the relationship of the temperature at the onset of flash sintering (TOnset) and the applied field (E) follows the power relationship TOnset (K) = 2440 E−1/5.85(V/cm). Using this relationship, and considering the sintering of the sample in the absence of an electric field, the critical electric field to enter the flash sintering regime is shown to be 24.5 V/cm. For electric fields between this critical electric field and 2250 V/cm, the onset of flash sintering occurs in the same range of critical volumetric power dissipation, between 1 and 10 mW/mm3, suggesting this is a material property. Despite the volumetric power dissipation being the critical value for the onset of flash sintering behavior, the current density achieved during sintering appears to be more critical for densification rather than maximizing power dissipation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call