Abstract

Electric field-assisted ion exchange process was carried out on an innovative soda magnesia silicate float glass by using a specifically realized equipment which allows to change the applied voltage and the polarity and to measure the flowing current.Parameters such as surface K/Na exchange rate, potassium penetration, inter-diffusion coefficient, residual stress and case depth were measured and correlated with the processing conditions. The results revealed a high propensity of the considered glass to be chemically strengthened and a beneficial effect of the applied electric field in terms of time and temperature. For treatment carried out at 410 °C potassium penetration depth in excess to 10 μm can be achieved in less than 5 min. By alternating the polarity, both sides can be homogeneously reinforced. When the duration of each single cycle at a certain polarity is increased, the potassium penetration depth increases although cycles longer than 10 min can be detrimental.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.