Abstract

Thin films of vanadium dioxide were deposited using a novel electric field assisted chemical vapor deposition methodology onto glass and gas sensor substrates. Electric fields were generated during the deposition reaction by applying a potential difference across the inter-digitated electrodes of the gas sensor substrate or buy applying an electric field between two transparent conducting oxide coated glass substrates. The deposited films were analyzed and characterized using scanning electron microscopy, Raman spectroscopy, X-ray diffraction, atomic force microscopy and contact angle measurements. It was found that applying an electric field led to large changes in film microstructure, preferential orientation and changes in the film growth rate. This led to significant changes in materials properties such as increased surface roughness and enhanced wetting behaviour. Electric field-assisted chemical vapour deposition shows great promise as a method for nano-structuring and tailoring the properties of metal oxide thin films.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call