Abstract

Different spinnerets can be used to generate needleless electrospinning with the potential to scale up the production of nanofibers. However, the electrospinning performance, normally refers to the quality of the as-spun fiber and the production rate, is dramatically different from different spinnerets. This study focuses on the electric field of different spinnerets under the same experimental parameters so as to understand the key factors that affect the electrospinning performance of upward needleless electrospinning. Modeling analysis suggested that the electric field could be further concentrated by optimizing the geometry of spinneret. Experimental investigation on needleless electrospinning from different spinnerets proved that the electrospinning performance was improved greatly with the optimization of the electric field of spinneret. Understanding of the relationship between electric field and spinning performance would benefit the design and development of needleless electrospinning.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.