Abstract

In this paper, the problem of the remote control of electric drives with a complex mechanical structure is discussed. Oscillations of state variables and control precision are the main issues found in such applications. The article proposes a smart, IoT-enabled controller, which allows remote communication with a drive. To solve the problem of speed oscillations and to make the system robust to parameter uncertainty, an adaptive controller with two neural networks is designed. First, numerical tests are conducted in a Matlab/Simulink environment to examine the operation of the proposed control strategy. Afterwards, the obtained results are verified in a laboratory setup equipped with a 0.5 kW electric motor. Remote access is provided by a low-cost, ARM-based ESP32 microcontroller. Usually, virtual instruments used to communicate with remote devices require specific software, which may be expensive and pose compatibility problems. Therefore, the main contribution of the article is the creation of a low-cost, web-based Human-Machine Interface (HMI) with an asynchronous server utility provided by the ESP32 that allows remote control and data acquisition of electric drive state variables.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.