Abstract
In this paper, we develop a theory to delineate the consequences of finite solvent polarization in electric double layer interaction or the osmotic pressure between two similar or oppositely charged surfaces. We use previously published Langevin-Bikerman equations to calculate this electric double layer interaction force or the osmotic pressure between the charged surfaces. The osmotic pressure between oppositely charged surfaces is found to be much larger than that between similarly charged surfaces, and for either case, the influence of solvent polarization ensures a larger pressure than that predicted by the Poisson-Boltzmann (PB) model. We derive distinct scaling relationships to explain the increase of the pressure as a function of the separation between the surfaces, the solvent polarizability, and the number density of water molecules. Most importantly, we demonstrate that our theory can successfully reproduce the experimental results of interaction force between similar and oppositely charged surfaces, by accounting for the large under-prediction made by the corresponding PB model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.