Abstract
Epidermal electronics, an emerging interdisciplinary field, is advancing the development of flexible devices that can seamlessly integrate with the skin. These devices, especially Electric Double Layer (EDL)-based sensors, overcome the limitations of conventional electronic devices, offering high sensitivity, rapid response, and excellent stability. Especially, Electric Double Layer (EDL)-based epidermal sensors show great potential in the application of wearable electronics to detect biological signals due to their high sensitivity, fast response, and excellent stability. The advantages can be attributed to the biocompatibility of the materials, the flexibility of the devices, and the large capacitance due to the EDL effect. Furthermore, we discuss the potential of EDL epidermal electronics as wearable sensors for health monitoring and wound healing. These devices can analyze various biofluids, offering real-time feedback on parameters like pH, temperature, glucose, lactate, and oxygen levels, which aids in accurate diagnosis and effective treatment. Beyond healthcare, we explore the role of EDL epidermal electronics in human-machine interaction, particularly their application in prosthetics and pressure-sensing robots. By mimicking the flexibility and sensitivity of human skin, these devices enhance the functionality and user experience of these systems. This review summarizes the latest advancements in EDL-based epidermal electronic devices, offering a perspective for future research in this rapidly evolving field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.