Abstract
The possibility of controlling flow separation on an oblique airfoil using dielectric-barrier discharge has been experimentally studied. The experiments were performed at subsonic flow velocities in a broad range of the angle of attack. The results of measurements of the velocity and surface pressure fields and an analysis of the flow patterns show that the application of electric discharge allows the interval of the angles of attack for separation-free flow past the airfoil to be significantly increased. Various discharge regimes have been studied, including those with continuous activation by single voltage pulses with a frequency of 0.5–5 kHz and by pulse trains at a repetition rate of 1–100 Hz. The efficiency of the flow separation control has been studied as dependent on the electrical parameters, frequency characteristics, and position of the discharge relative to the flow separation line.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.