Abstract

Electric dipole ($E1$) response of $^{6}$He is studied with a fully microscopic six-body calculation. The wave functions for the ground and excited states are expressed as a superposition of explicitly correlated Gaussians (CG). Final state interactions of three-body decay channels are explicitly taken into account. The ground state properties and the low-energy $E1$ strength are obtained consistently with observations. Two main peaks as well as several small peaks are found in the $E1$ strength function. The peak at the high-energy region indicates a typical macroscopic picture of the giant dipole resonance, the out-of-phase proton-neutron motion. The transition densities of the lower-lying peaks exhibit in-phase proton-neutron motion in the internal region, out-of-phase motion near the surface region, and spatially extended neutron oscillation, indicating a soft-dipole mode (SDM) and its vibrationally excited mode.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call