Abstract
Pseudotachylites occur in the form of thin glassy veins quenched from frictional melts along the fault planes of major earthquakes. They contain finely grained magnetite and often exhibit a high natural remanent magnetization (NRM). High NRM values imply strong local electric currents. These currents must persist for some time, while the pseudotachylite veins cool through the Curie temperature of magnetite around 580 °C. There is no generally accepted theory explaining how such powerful, persistent currents may be generated along the fault plane. Data presented here suggest the activation of electronic charge carriers, which are present in igneous rocks in a dormant, inactive form. These charge carriers can be “awakened” by the application of stress. They are electrons and defect electrons, also known as positive holes or p-holes for short. While p-holes are capable of spreading out of the stressed rock volume into adjacent p-type conductive unstressed rocks, electrons require a connection to the hot, n-type conductive lower crust. However, as long as the (downward) electron flow is not connected, the circuit is not closed. Hence, with the outflow of p-holes impeded, no current can be sustained. This situation is comparable to that of a charged battery where one pole remains unconnected. The friction melt that forms coseismically during rupture, provides a conductive path downward, which closes the circuit. This allows a current to flow along the fault plane. Extrapolating from laboratory data, every km 3 of stressed igneous rocks adjacent to the fault plane can deliver 10 3–10 5 A. Hence, the current along the fault plane will not be limited by the number of charge carriers but more likely by the (electronic) conductivity of the cooling pseudotachylite vein. The sheet current will produce a magnetic field, whose vectors will lie in the fault plane and perpendicular to the flow direction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.