Abstract

The electric conduction in the fibrous medium constructed by a homogeneous array of parallel, identical, charged, circular cylinders having an arbitrary zeta potential filled with the solution of a symmetrically charged electrolyte is analytically examined. The thickness of the electric double layers surrounding the dielectric cylinders is assumed to be small relative to the radius of each cylinder and to the gap width between two neighboring cylinders, but the polarization of the mobile ions in the diffuse layers is allowed. The effect of interactions among individual cylinders is taken into explicit account by employing a unit cell model. The appropriate equations of conservation of electrochemical potential energies of ionic species are solved for each cell, in which a cylinder is envisaged to be surrounded by a coaxial cylindrical shell of the fluid solution. Analytical expressions for the effective electric conductivity are obtained in closed forms as functions of the porosity of the fiber matrix and other characteristics of the porous system. Comparisons of the results of the cell model with different conditions at the outer boundary of the cell are made. Under an otherwise identical condition, the electric conductivity in a porous medium composed of an array of parallel cylinders in the transverse direction is smaller than that of a suspension of spheres. The effect of interactions among the cylinders or spheres on the effective conductivity can be quite significant under appropriate conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call