Abstract
To cope with the rapid development in technology, engineers are dealing with complex and heterogenous systems which composed of blocks that belong to different engineering fields such as electrical, mechanical, chemical, electromechanical, fluid, thermal etc. Mechanical and electrical systems are more often go hand to hand in many industrial systems. For system analyzing and designing purpose, engineers must model and simulate the systems to investigate problems and aim for the best performance before proceeding to the manufacturing stage. In the presence of complex mechanical system blocks, electrical and electronics engineers are often facing difficulties in modeling the mechanical blocks. Although similarity between individual mechanical and electrical elements is recognized since long time, but it has not drawn deserved attention for the use in the system level. In this paper, we investigate in great details how enabling electrical and electronics engineers to easily model and analyze complex mechanical and electromechanical systems through systematic approach. For this objective, thirteen rules are set, established, and elaborated on how to find the electrical circuit equivalent of a given mechanical or electromechanical system in order to be modelled and analyzed. The proposed approach is tested on both complex translational mechanical and electromechanical systems which includes a rotational mechanical system. Findings demonstrate that models generated by the equivalent of electric circuits are matching the models of existing mechanical and electromechanical system by 100%. The proposed systematic approach is promising and can be widely implemented in several industrial fields.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.