Abstract

We present a method for simulating any non-interacting and time-periodic tight-binding Hamiltonian in Fourier space using electric circuits made of inductors and capacitors. We first map the time-periodic Hamiltonian to a Floquet Hamiltonian, which converts the time dimension into a Floquet dimension. In electric circuits, this Floquet dimension is simulated as an extraspatial dimension without any time dependency in the electrical elements. The number of replicas needed in the Floquet Hamiltonian depends on the frequency and strength of the drive. We also demonstrate that we can detect the topological edge states (including the anomalous edge states in the dynamical gap) in an electric circuit by measuring the two-point impedance between the nodes. Our method paves a simple and promising way to explore and control Floquet topological phases in electric circuits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.