Abstract

Metasurfaces can extend the optical properties of conventional materials by structuring surfaces at a subwavelength scale. These artificial subwavelength surfaces mimic the physics of conventional materials and can, in principle, be designed to provide novel optical material properties. Metal-insulator-metal (MIM) antenna metasurfaces are among the most widely used as ideal absorbers and emitters. In this work, we present MIM metasurfaces in the mid-infrared that comply in the electric and magnetic forms of Babinet’s, Lorentz’s, and Kirchhoff’s principles. To verify the validity of Babinet's, Lorentz's, and Kirchhoff's MIM metasurfaces, we computed their reflection and absorption spectra as well as electric and magnetic field maps. We found that even in the presence of graphene on top of the electric and magnetic MIM metasurfaces, these principles still hold qualitatively. However, the excitation of gap surface plasmon polaritons (SPPs) and graphene SPPs fails to comply quantitatively. Additionally, we fabricated the MIM metasurfaces and used imaging Fourier transform infrared spectroscopy in the mid infrared spectrum to validate them. Finally, we explore the potentials and limits of the use of graphene as tunability material, with a tunability bandwidth up to 0.6 µm. Our findings can be applied to the development of electric and magnetic frequency selectivity metasurfaces, polarizers, coherent thermal sources, and detectors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.