Abstract
We present and discuss the results of an integrated electrical and electromagnetic survey in the active volcanic area of Mount Somma–Vesuvius (Naples, Italy). Dipolar geoelectrics (DG), self-potential (SP) and magnetotellurics (MT) were used to investigate the shallow and deep regions of the volcanic area. The DG apparent resistivity pseudosection along a N–S profile across the Vesuvius cone showed the existence of a largely extended conductive zone, closely in correspondence to the Somma caldera, including in the middle the top terminal part of the Vesuvius main plumbing system. The SP data, collected over the whole volcanic area, showed the existence of a W–E-directed wide band of weak positive anomalies, indicating again a conductive zone, not only including the whole Somma caldera but also extending towards the Tyrrhenian sea. A roughly N–S-trending narrow fracture system, cutting the lowest Mount Somma eastern slopes, was further evident from the SP data. A new SP tomographic inversion procedure allowed to detect a large positively charged nucleus in the depth range 600–2200 m b.g.l., located beneath the westernmost portion of a former caldera, related to the Avellino plinian eruption. The geophysical interpretation of this large positive anomaly was made using Onsager's theory of coupled electrokinetic and thermoelectric flows. The final interpretation was that the shallow, conductive central zone is very likely made up of an intensively altered and mineralised block of cemented volcanic breccia. Finally, the MT data, distributed along two perpendicular profiles, enabled us to obtain the first significant picture of the deep electrical structure of the volcano. The Bostick inversion revealed the existence of a conductive intracrustal layer, including a perched more conductive zone located roughly beneath the central-western sector of the Vesuvius apparatus.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.