Abstract
The electric actuation of room-temperature liquid metals, such as Galinstan (gallium-indium-tin), has largely been conducted in alkaline electrolyte. Addition of surface-active anions and a proper acidic pH are expected to influence the interfacial tension of the liquid metal due to a high surface charge density. Hence, it should be possible to actuate liquid metals in such acidic environments. To ascertain this, at first, the dependence of the interfacial tension of Galinstan in NaOH, acidified KI, and acidified NaCl electrolyte on the concentration of the surface-active anions OH-, I-, and Cl-, respectively, were studied. Subsequently, a systematic study of the actuation of Galinstan in acidified KI electrolyte was executed and compared to actuation in alkaline medium. In the presence of HCl and acidified NaCl electrolyte, the interfacial tension of Galinstan is only marginally altered, while acidified KI solution reduced the interfacial tension of Galinstan significantly from 470.8 ± 1.4 (no KI) to 370.6 ± 4.1 mN/m (5 M KI) due to the high surface charge density of the electric double layer. Therefore, in acidified electrolyte in the presence of surface-active anions, the electrically actuated motion of LM can be realized. In particular, the actuation of Galinstan achieves a higher average and maximum speed at lower applied voltage and power consumption for acidified KI electrolyte. The formation of high surface charge density in acidified environments signifies a paradigm shift and opens up new possibilities to tune interfacial tension and controlled LM droplet motion of room-temperature liquid metals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.