Abstract

Electret filters are electrostatically charged nonwovens which are commonly used in aerosol filtration to remove fine particles from gases. It is known that the charge and thus also the filtration efficiency can degrade over time. Thus, many testing standards require to remove the charge by treatment with liquid isopropanol (IPA) or IPA-saturated air. However, the parameters influencing this discharge have not been completely clarified yet. The aim of this work was, on the one hand, to experimentally investigate the influence of the IPA treatment on different electret filters and, on the other hand, to show the optimization potential of electret filters with respect to efficiency and long-term stability by numerical simulations. The experiments revealed that the air permeability is a central influencing parameter. Small pores lead to a reduced discharge efficiency using liquid IPA, while both treatment methods are suitable for larger pores. The simulations showed that a homogeneous charge distribution within the filter depth is advantageous for the initial performance. In contrast, charge penetrating deeper in the filter medium delays the charge decay and thus increases the operating time, with the trade-off of a lower initial performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.