Abstract

Electret microphones are produced in numbers that significantly exceed those for all other microphone types. This is due to the fact that air-borne electret sensors are of simple and low-cost design but have very good acoustical properties. In contrast, most of the discrete structure-borne sound sensors (or accelerometers) are based on the piezoelectric effect. In the present work, capacitive accelerometers utilizing the electret principle were constructed, built, and characterized. These electret accelerometers comprise a metallic seismic mass, covered by an electret film, a ring of a soft cellular polymer supplying the restoring force, and a metallic backplate. These components replace membrane, spacer, and back electrode, respectively, of the electret microphone. An adjustable static pressure to the seismic mass is generated by two metal springs. The dynamic characterization of the accelerometers was carried out by using an electrodynamic shaker and an external charge or voltage amplifier. Sensors with various seismic masses, air gap distances, and electret voltages were investigated. Charge sensitivities from 10 to 40 pC/g, voltage sensitivities from 600 to 2000 mV/g, and resonance frequencies from 3 to 1.5 kHz were measured. A model describing both the charge and the voltage sensitivity is presented. Good agreement of experimental and calculated values is found. The experimental results show that sensitive, lightweight, and inexpensive electret accelerometers can be built.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call