Abstract

V2X (Vehicle-to-Everything) communications play a crucial role in enabling the efficient and reliable exchange of information among vehicles, infrastructure, and other entities in smart transportation systems. However, the inherent vulnerabilities and dynamic nature of V2X networks present significant challenges for ensuring secure and trustworthy communication. By enhancing the security of the OLSR (Optimized Link State Routing) protocol through secure MultiPoint Relays (MPRs) Selection, this research aims to provide a robust approach that enhances the overall security posture of V2X networks, enabling safe and secure interactions between vehicles and their environment. The proposed method is based on the Byzantine general’s problem, which is the principle used in blockchain. Compared to the classical flooding mechanism, this technique greatly reduces network traffic overhead and improves the efficiency of bandwidth utilization. The results demonstrated that the proposed algorithm performed better than the well-used UM-OLSR implementation. The outcome proved that our MPR election algorithm guarantees a better packet delivery ratio, and it also performs very well in the detection and isolation of malicious nodes, leading to increased security of the OLSR protocol control plane.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call