Abstract

In recent years, electron–electron double resonance detected nuclear magnetic resonance (EDNMR) has gained considerable attention as a pulsed electron paramagnetic resonance technique to probe hyperfine interactions. Most experiments published so far were performed at W-band frequencies or higher, as at lower frequencies detection of weakly coupled low-γ nuclei is hampered by the presence of a central blind spot, which occurs at zero frequency. In this article we show that EDNMR measurements and a meaningful data analysis is indeed possible at intermediate microwave frequencies (Q-band, 34 GHz), once experimental parameters have been optimized. With highly selective detection pulses and Gaussian shaped electron–electron double resonance (ELDOR) pulses it is possible to detect low-γ nuclei coupled to paramagnetic Mn2+. Weakly coupled 14N resonances, which are separated from the zero frequency by only 2.8 MHz, were readily detected. In systems where different spin active nuclei are coupled to the electron spin, particular care has to be taken when using higher powered ELDOR pulses, as combination frequencies from the two nuclei (∆m S = ±1, ∆m I,1 = ±1, ∆m I,2 = ±1) can lead to severe line broadening and complicated EDNMR spectra. We also compare the EDNMR spectra of 13C-labeled Mn–DOTA to 13C-Mims electron–nuclear double resonance to get a better insight into the similarities and differences in the results of the two techniques for 13C hyperfine coupling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call