Abstract

A mathematically well-posed nonlocal model is formulated based on the variational approach and the transfer matrix method to investigate the size-dependent elastostatics of nonuniform miniaturized beams. The beams are composed of an arbitrary number of sub-beams with diverse material and geometrical properties, as well as small-scale size dependency. The model adopts a stress-driven nonlocal approach, a well-established framework in the Engineering Science community. The curvature of a sub-beam is defined through an integral convolution, considering the bending moments across all cross-sections of the sub-beam and a kernel function. The governing equations are solved and the deflections are derived in terms of some constants. The formulation uses local and interfacial transfer matrices, incorporating continuity conditions at cross-sections where sub-beams are joined, to define relations between constants in the solution of a generic sub-beam and those of the first sub-beam at the left end. The boundary conditions are then imposed to derive an explicit, closed-form solution for the deflection. The solution significantly simplifies the study of nonuniform beams with multiple sub-beams. The predictions of the model for two limiting cases, namely local nonuniform and nonlocal uniform beams, are in excellent agreement with the available literature data. The flexural behavior of nonuniform miniaturized beams, composed of two to five different sub-beams and subjected to different boundary conditions, is studied. The results are presented and discussed, emphasizing the effects of the material properties, nonlocalities, and lengths of the sub-beams on the deflection. It is demonstrated that the flexural response of nonlocal nonuniform beams is more complex than local counterparts. Unlike the local beams, dividing a nonlocal uniform beam into multiple sub-beams and then reconnecting them changes the overall stiffness of the beam. The study highlights the potential to design nonuniform miniaturized beams with specific configurations to control their flexural response effectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.