Abstract

For the first time, the lower bound shakedown theorem is integrated into a level set–based topology optimization framework to identify lightweight elastoplastic designs. Shakedown is a cyclic elastoplastic behavior in which, upon cycling beyond the elastic limit, the accumulation of plastic strain arrests and purely elastic behavior is recovered. In contrast to most elastoplastic topology optimization, the use of a lower bound shakedown limit allows elastoplastic shakedown limits to be rigorously estimated using only the elastic solution. Under small deformation assumptions, this amounts to solving one simple partial differential equation, avoiding the non-linearity associated with plasticity, and thus simplifying the resolution process. Numerical results are provided for several benchmark examples. The results highlight the design performance enhancements attributed to allowing elastoplastic shakedown to occur instead of designing to first yield. In particular, up to 10% reduction in weight is found for the simple structures considered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.