Abstract

In designing bolted joints, it is necessary to know the contact stress distributions in bolted joints. Recently, high strength bolts have been used with a higher bolt preload. As the results, the permanent set occurs sometimes at the bearing surfaces of clamped parts in the bolted joint. In addition, when external loads such as tensile loads, transverse loads and bending moments are applied to the bolted joint, the permanent set can be extended at the bearing surfaces. As the permanent set increases, the reduction in the bolt preload increases. Thus, it is important to estimate the reduction in the bolt preload from the reliability stand point. However, no study on the permanent set at the bearing surface under the external loading taking into account the bending moment has been carried out. In this study, the stress distribution and the extension of the permanent set at the bearing surface of the T-flange bolted joint under the external tensile loading are examined using Finite Element Method (FEM), where two T-flanges are clamped with a hexagon bolt and a nut. Using the obtained results, an increment in the axial bolt force and the reduction in the bolt preload are estimated. For verification of the FEM stress analysis, the load factor of hexagon bolt was measured. The FEM results of the load factor (the ratio of the increment in the axial bolt force to the tensile load) and the axial bolt force are in a fairly good agreement with the experimental results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.