Abstract

The complete elasto-plastic microcontact model of anisotropic rough surfaces is proposed. The description of anisotropic random surfaces is restricted here to strongly rough surfaces; for such surfaces the summits are represented by highly eccentric elliptic paraboloids having their semi-major axes oriented in the direction of the grain. The present model is based on the volume conservation of asperities in which the plasticity index is modified to suit more general geometric contact shapes during plastic deformation process. This model is utilized to determine the total contact area, contact load and contact stiffness which are a mixture of both the elastic and plastic components. For low nominal pressures both the elastic and elasto-plastic contact stiffness is found to be almost linear in relation to the normal load. The elastic and elasto-plastic stiffness coefficients decrease with increasing variance of the surface height about the mean plane. The standard deviation of slopes and standard deviation of curvatures have no observable effects on the normal contact stiffness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.