Abstract
A micromechanical elastoplastic damage model considering a finite RVE is proposed to predict the overall elastoplastic damage behavior of circular fiber-reinforced ductile (matrix) composites. The constitutive damage model proposed in our preceding work ( Kim and Lee, 2009) considering a finite Eshelby’s tensor ( Li et al., 2005; Wang et al., 2005) is extended to accommodate the elastoplastic behavior of the composites. On the basis of the exterior-point Eshelby’s tensor for circular inclusions and the ensemble-averaged effective yield criterion, a micromechanical framework for predicting the effective elastoplastic damage behavior of ductile composites is derived. A series of numerical simulations are carried out to illustrate stress–strain response of the proposed micromechanical framework and to examine the influence of a Weibull parameter on the elastoplastic behavior of the composites. Furthermore, comparisons between the present predictions and experimental data available in the literature are made to further assess the predictive capability of the proposed model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.