Abstract
The elastic support method was recently developed to simulate the effects of unbounded solids in the finite element analysis of stresses and displacements. The method eliminates all the computational disadvantages encountered in the use of `infinite' elements or coupled finite element boundary element methods while retaining all the computational advantages of the finite element method. In this paper, the method is extended to the elasto-plastic analysis of fracture in infinite solids by using the load increment approach and including the effects of strain hardening. Numerical tests and parametric study are conducted by analysing a straight crack in an infinite plate. Present results for J integrals and plastified zones are compared, respectively, with analytical solutions and available results obtained by using the body force method. The agreement between the results is found to be very good even if the truncation boundary of the finite element model is located very close to the crack tip or the plastified zone.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.