Abstract

Three-dimensional elastoplastic finite element (FE) analysis models considering a damage zone and cleavage were developed, including plastic behavior of embedment tests parallel and perpendicular to the grain at ambient and high temperatures, in order to study the embedment behavior of timber. In a numerical analysis of compression tests to define material properties of timber, the post-yield behavior of the X-axis in the axial direction was larger than the test values when the post-yield slope of the test result were set to the plastic modulus. The reason was that the stress on the Y-axis and Z-axis increased after the yield point; thus, the equivalent yield stress decreased. In the numerical analysis of the embedment tests, the effect of the damage zone must be considered in the analytical models because the initial stiffness of the numerical results in compression parallel to the grain was considerably higher than that of the test results when the damage zone was not considered. In the numerical analysis of the embedment tests in compression perpendicular to the grain, the two models reproduced the stiffness and behavior after the yield point of the test results. The model that considered cleaving showed the stress distribution after cleavage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.