Abstract

ABSTRACTThe paper presents results on the elastoplastic analysis of compact and thin-walled structures via refined beam models. The application of Carrera Unified Formulation (CUF) to perform elastoplastic analysis of isotropic beam structures is discussed. Particular attention is paid to the evaluation of local effects and cross-sectional distortions. CUF allows formulation of the kinematics of a one-dimensional (1D) structure by employing a generalized expansion of primary variables by arbitrary cross-section functions. Two types of cross-section expansion functions, TE (Taylor expansion) and LE (Lagrange expansion), are used to model the structure. The isotropically work-hardening von Mises constitutive model is incorporated to account for material nonlinearity. A Newton–Raphson iteration scheme is used to solve the system of nonlinear algebraic equations. Numerical results for compact and thin-walled beam members in plastic regime are presented with displacement profiles and beam deformed configurations along with stress contour plots. The results are compared against classical beam models such as Euler–Bernoulli beam theory and Timoshenko beam theory, reference solutions from literature, and three-dimensional (3D) solid finite element models. The results highlight: (1) the capability of the present refined beam models to describe the elastoplastic behavior of compact and thin-walled structures with 3D-like accuracy; (2) that local effects and severe cross-sectional distortions can be detected; (3) the computational cost of the present modeling approach is significantly lower than shell and solid model ones.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call