Abstract

Objective. An ultrasound-based system capable of both imaging thrombi against a dark field and performing quantitative elastometry could allow for fast and cost-effective thrombosis diagnosis, staging, and treatment monitoring. This study investigates a contrast-enhanced approach for measuring the Young’s moduli of thrombus-mimicking phantoms. Approach. Magnetomotive ultrasound (MMUS) has shown promise for lending specific contrast to thrombi by applying a temporally modulated force to magnetic nanoparticle (MNP) contrast agents and measuring resulting tissue displacements. However, quantitative elastometry has not yet been demonstrated in MMUS, largely due to difficulties inherent in measuring applied magnetic forces and MNP densities. To avoid these issues, in this work magnetomotive resonant acoustic spectroscopy (MRAS) is demonstrated for the first time in ultrasound. Main results. The resonance frequencies of gelatin thrombus-mimicking phantoms are shown to agree within one standard deviation with finite element simulations over a range of phantom sizes and Young’s moduli with less than 16% error. Then, in a proof-of-concept study, the Young’s moduli of three phantoms are measured using MRAS and are shown to agree with independent compression testing results. Significance. The MRAS results were sufficiently precise to differentiate between thrombus phantoms with clinically relevant Young’s moduli. These findings demonstrate that MRAS has potential for thrombus staging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.