Abstract

The development of eco-friendly elastomeric materials has become an important issue in recent years. In this work, thermoplastic elastomer samples of an ethylene-norbornene copolymer (EN) with coffee and tea biofillers mixed with typical fillers such as montmorillonite (MMT), silica (SiO2), and cellulose were investigated. The aim of this research was to determine the effect of fillers on the properties of the materials and to assess their degradability after two ultraviolet (UV) aging cycles (200, 400 h). The scientific novelty of this work is the assessment of the anti-aging effect of simultaneous biofillers-stabilizers based on coffee and tea waste. The surfaces of the obtained polymer compositions were examined using infrared spectroscopy (FTIR-ATR). Contact angles were determined, and surface energy was calculated. The mechanical properties were tested, and the influence of plant fillers and aging on the color change in the materials was analyzed. The combination of coffee with silica, MMT, and cellulose fillers limited the migration of fatty acids and other compounds from the biofiller to the EN surface (FTIR analysis). Based on the aging coefficients K, it was shown that all coffee- and tea-based fillers stabilized the polymer compositions during UV aging (400 h). The results allowed the authors to determine the importance and impact of waste plant fillers on the degradability of the synthetic EN.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.