Abstract

Recent research for unconventional types of electronics has revealed that it is necessary to transfer-print high-performance microelectronic devices onto diverse surfaces, including flexible or stretchable surfaces, to relieve mechanical constraints associated with conventional rigid electronics. Picking up and placing ultrathin microdevices without damage are critical procedures for the successful manufacture of various types of unconventional electronics. This paper introduces elastomeric angled microflaps that have reversible adhesion; i.e., they generate higher adhesion for picking up and low adhesion for printing because of their structural shapes and viscoelastic material properties. The microstructured stamp, fabricated in relatively simple ways, enables simultaneous transfer-printing of multiple silicon membranes that have irregular shapes in sizes ranging from micrometer to millimeter scales. Mechanical characterizations by experiment reveal optimal parameters for picking up and placing ultrathin membranes on a programmable custom-built microstage. Further refinement of the structures and materials should be useful for many applications requiring the microassembly of multiple semiconductor membranes in diverse shapes and sizes on dry surfaces without the aid of liquid adhesives.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.