Abstract

AbstractThe effect of the elastomer structure on toughening highly crosslinked epoxy systems in a resin transfer moulding process (RTM) was investigated. Two kinds of elastomers containing carboxyl functionalized groups were used: (1) a reactive liquid elastomer based on carboxyl‐terminated butadiene‐acrylonitrile copolymer (CTBN), (2) a preformed core‐shell rubber (CSR). The introduction of CTBN rubber caused the modification in the glass transition temperature due to the miscibility in the epoxy matrix, whereas CSR particles did not. During cure, these elastomers affected the morphological, rheological and dielectric behaviour of epoxy/amine systems. A blend of 5% CTBN and 5% CSR exhibited a bimodal distribution of rubber particle sizes (analyzed by transmission electron microscopy) whereas scanning electron microscopy showed the glass fibre‐matrix cohesion in fracture surfaces. A semi‐empirical model was used (developed by Castro‐Macosko for describing chemorheological behaviour of epoxy/amine systems for the RTM process). The increase in viscosity and the reduction in ion conductivity were the two key parameters to monitor the cure process. The presence of rubber affected the rheological behaviour involving initial viscosity and gel point. The investigation of temperatures, pressures and ionic conductivities in various glass fibre layers was conducted to control the front flow filling and the cure reaction. The introduction of rubber modified the inflexion area of the cured rubber–epoxy blends by changing the cure rate. Copyright © 2004 Society of Chemical Industry

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.