Abstract
AbstractCurauá fibers were used to reinforce elastomeric matrices with polyaniline (PAni) synthesized directly on the fiber surfaces to produce antistatic‐reinforced composites. In this work, composites of poly(ethylene‐co‐propylene‐co‐diene) with curauá fibers coated with PAni were prepared by mechanical mixing in a counter‐rotating twin rotor internal mixer. Then, mechanical and electrical properties of these composites were correlated to Raman and Fourier transformed infrared spectra (FTIR) using chemometric data analyze, such as principal component analysis (PCA) and hierarchical cluster analysis (HCA). Raman spectra showed correlation with electrical properties of conductive composites while FTIR spectra showed good correlation with mechanical properties. EPDM reinforced with PAni coated curauá fibers presented higher tensile strength and modulus than EPDM reinforced with pristine curauá fibers, indicating that the reinforcement effect was obtained. Chemical interaction between the phases occurs with formation of hydrogen bonding between the aminic nitrogens of PAni and the carbonyl groups of lignin of the fibers. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014, 131, 40056.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.