Abstract

Fabrication of lightweight composites using thermally responsive expandable microspheres (EM) embedded in an elastomeric matrix to form syntactic foams offers significant opportunities to create functional and structural composites for diverse applications. The morphology of the EM-elastomer composite on the micro- and macro-scales is significantly influenced by the fabrication sequence and parameters (composition, expansion time/temperature, etc.). Herein, we report the morphological evolution of an EM-elastomer composite through the fabrication processes and elucidate the interaction of relevant fabrication parameters. Unlike the majority of published reports on hard EM composites, the in-situ expansion of the closed-cell foam structure within a soft matrix leads to larger void sizes, and the concomitant expansive force of the EM impacts the polymer chain mobility within the soft composite. At the same time, higher EM loading improves the mechanical properties; the evolved microstructure leads to a lightweight but stiff structure. For the first time the report details the thermal expansion of EM under applied pretension, leading to irreversible prestrain-dependent morphological changes toward anisotropic mechanical properties. Additionally, the composites are shaped under constrained expansion. The study provides a comprehensive guide and expands the pathways for the practical application of EM-embedded soft syntactic foams in aerospace, electronics, wearables, robotics, etc.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.