Abstract

The elastohydrodynamic interaction between an elastic filament and its surrounding fluid was exploited to develop the first microswimmers. These flexible microswimmers are typically actuated magnetically at one end and their propulsion behavior is relatively well understood. In this work, we move beyond the traditional single-end actuation setup and explore the propulsion characteristics of an elastic filament driven by magnetic torques at both ends. We report the emergence of new modes of propulsion behaviors in different physical regimes, depending on the balance of elastic and viscous forces as well as the arrangement of the magnetic moments at the filament ends. In particular, under the same magnetic actuation, a filament driven at both ends can propel either forward or backward depending on its relative stiffness. Moreover, this new backward propulsion mode can generate a magnitude of propulsion that is unattainable by the traditional single-end actuation setup. We characterize these new propulsion behaviors and provide some physical insights into how they emerge from the complex interplay between viscous and elastic forces and magnetic actuation in various configurations. Taken together, these findings could guide the development of soft microrobots with enhanced propulsion performance and maneuverability for future biomedical applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.