Abstract

The paper presents a numerical solution for the elastohydrodynamic lubrication of low modulus point contacts which is broadly equivalent to the theory of Grubin for materials of high elastic modulus. The theoretical results obtained for the variation of minimum film thickness using this approach are therefore expected to apply to conditions of high load and low speed. For less severe conditions in which elastic deformation is less significant an alternative approach has been developed. Results of this analysis show the transition from undeformed to heavily loaded conditions. The effect of lubricant starvation has been examined for heavily loaded conditions and the theoretical results are compared with those obtained previously for high elastic modulus point contact.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.